Joint Optimization Dispatching for Hybrid Power System Based on Deep Reinforcement Learning
编号:129 访问权限:仅限参会人 更新:2020-11-11 12:09:44 浏览:152次 张贴报告

报告开始:暂无开始时间(12)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
With large scale renewable power integrating, hybrid power system needs joint optimization dispatching. Considering complementary characteristics of different power types, this paper first constructs a day ahead time scale optimized dispatching model. The objectives are minimizing the system operation cost and maximizing the renewable energy consumption. The startup-stop status of thermal units and power output of different type power stations are selected as optimization variables. The problem then is modeled as a multi-step Markov decision process which is a sequential decision process problem. A reinforcement learning method, Deep Deterministic Policy Gradient algorithm, is introduced to solve the decision problem. Finally, simulations have been carried out to validate the effectiveness of the proposed method. Numerical results show that the proposed method obtains a satisfied result which can meet the power load demanded, ensure the consumption of renewable energy and minimize the system cost meanwhile.
关键词
Joint Optimization Dispatching, Hybrid Power System, Renewable Energy, Reinforcement Learning
报告人
Yuchen Qi
Tsinghua University

稿件作者
Yuchen Qi Tsinghua University
Shuang Wu Tsinghua University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    10月21日

    2019

    10月24日

    2019

  • 10月13日 2019

    摘要录用通知日期

  • 10月13日 2019

    初稿截稿日期

  • 10月14日 2019

    初稿录用通知日期

  • 10月24日 2019

    注册截止日期

  • 10月29日 2019

    终稿截稿日期

承办单位
Xi'an Jiaotong University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询