Transfer Learning Based Equivalent Magnetization Hysteresis Recognition for Transformer Protection
编号:121 访问权限:仅限参会人 更新:2020-11-11 12:09:42 浏览:127次 张贴报告

报告开始:暂无开始时间(12)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
Power transformer is a key equipment of power system, and transformer protection is still an important research hotspot for the safe operation of the electric power system. Kinds of transform protection algorithms have been proposed including many artificial intelligence (AI) algorithms. But the requirement of big data limits the generalization of AI algorithms. Different types of ferromagnetic material have the same shape of magnetization hysteresis which is an effective indicator for transformer protection. We propose transfer learning based equivalent magnetization hysteresis recognition algorithm for transformer protection which use little trial/real data with simulation data to solve the few-shot problem. In our experiments, we validate that the proposed algorithm can reach an improved accuracy compared with other two mentioned in the article.
关键词
equivalent magnetization hysteresis,transformer protection,transfer learning,few-shot problem
报告人
Zaibin Jiao
Xi'an Jiaotong University

稿件作者
Xiaopeng Wang Xi'an Jiaotong University
Zongbo Li Xi'an Jiaotong University
Zaibin Jiao Xi'an Jiaotong University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    10月21日

    2019

    10月24日

    2019

  • 10月13日 2019

    摘要录用通知日期

  • 10月13日 2019

    初稿截稿日期

  • 10月14日 2019

    初稿录用通知日期

  • 10月24日 2019

    注册截止日期

  • 10月29日 2019

    终稿截稿日期

承办单位
Xi'an Jiaotong University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询