705 / 2019-04-23 20:20:36
Non-intrusive Load Decomposition of Stacked Hybrid Recurrent Neural Networks
non-intrusive load decomposition, stacked hybrid recurrent neural networks, deep learning
终稿
chao fan / Xi’an University of Technology
Non-intrusive Load Decomposition (NILD) is the process of extracting the power consumptions multiple appliances from the total consumption signal of the building. For the problems of weak time characteristic, high misjudgment rate and low accuracy of load decomposition of traditional algorithm for multi-state equipment, this paper, based on deep learning, proposes a stacked hybrid recurrent neural networks (SHRNNs) method to decompose power load. Firstly, the NILD model of SHRNNs is constructed by combining gated recurrent unit neurons, long short-term memory neurons and convolution unit neurons, which often used to solve the time series problem. Then, based on the UK-DALE-2017 dataset,different input sequence lengths are set according to different electrical equipment, and the total load sequence is decomposed by using the built model. Finally, the validity of the model is verified by comparing with the traditional load decomposition algorithm.
重要日期
  • 会议日期

    10月21日

    2019

    10月24日

    2019

  • 10月13日 2019

    摘要录用通知日期

  • 10月13日 2019

    初稿截稿日期

  • 10月14日 2019

    初稿录用通知日期

  • 10月24日 2019

    注册截止日期

  • 10月29日 2019

    终稿截稿日期

承办单位
Xi'an Jiaotong University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询