624 / 2019-04-25 09:16:17
Multiple transcriptional factors control stomata development in rice
cell division, cell differentiation, rice, stomata, transcriptional factor
摘要录用
Suiwen Hou / Lanzhou University
Zhongliang Wu / Lanzhou University
Liang Chen / Lanzhou University
Qi Yu / Lanzhou University
Grass stomata can balance gas exchange and evaporation effectively in rapidly changing environments via their unique anatomical features. Although the key components of stomatal development in Arabidopsis have been largely elucidated over the past decade, the molecular mechanisms that govern stomatal development in grasses are poorly understood. Via the genome editing system and T-DNA insertion lines, the key transcriptional factors (TFs) regulating stomatal development in rice (Oryza sativa) were knocked out. A combination of genetic and biochemical assays subsequently revealed the functions of these TFs. OsSPCH/OsICE is essential for the initiation of stomatal lineage. OsMUTE/OsICE determines meristemoid to guard mother cell (GMC) transition. OsFAMA/OsICE influences subsidiary mother cell asymmetric division and mature stoma differentiation. OsFLP regulates the orientation of GMC symmetrical division. More importantly, we found that OsSCR/OsSHR controls the initiation of stomatal lineage cells and the formation of subsidiary cells. The transcription of OsSCR is activated by OsSPCH and OsMUTE. This study characterised the functions of master regulatory TFs that control each stomatal developmental stage in rice. Our findings are helpful for elucidating how various species reprogramme the molecular mechanisms to generate different stomatal types during evolution.
重要日期
  • 会议日期

    06月16日

    2019

    06月21日

    2019

  • 05月01日 2019

    初稿截稿日期

  • 06月21日 2019

    注册截止日期

联系方式
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询