414 / 2019-01-21 15:25:52
TrG proteins Act Together with a PcG Protein to Maintain Chromatin Integrity for Epigenetic Silencing during Seed Germination in Arabidopsis
trxG, PcG, histone modification, chromatin integrity, seed gene repression
摘要录用
Li Pu / Chinese Academy of Agricultural Sciences (CAAS)
Abstract:PcG and trxG proteins have been shown to act antagonistically to epigenetically regulate gene expression in eukaryotes. The trxG proteins counteract PcG-mediated floral repression in Arabidopsis, but their roles in other developmental processes are poorly understood. We investigated the interactions between the trxG genes, ATX1 and ULT1, and the PcG gene EMF1 during early development. Unexpectedly, we found that mutations in the trxG genes failed to rescue the early-flowering phenotype of emf1 mutants. Instead, emf1 atx1 ult1 seedlings showed a novel swollen root phenotype and massive deregulation of gene expression. Greater ectopic expression of seed master regulatory genes in emf1 atx1 ult1 triple than in emf1 single mutants indicates that PcG and trxG factors together repress seed gene expression after germination. Furthermore, we found that the widespread gene derepression is associated with reduced levels of H3K27me3, an epigenetic repressive mark of gene expression, and with globally altered chromatin organization. EMF1, ATX1, and ULT1 are able to bind the chromatin of seed genes and ULT1 can physically interact with ATX1 and EMF1, suggesting that the trxG and EMF1 proteins directly associate at target gene loci for EMF1-mediated gene silencing. Thus, while ATX1, ULT1, and EMF1 interact antagonistically to regulate flowering, they work together to maintain chromatin integrity and prevent precocious seed gene expression after germination.
重要日期
  • 会议日期

    06月16日

    2019

    06月21日

    2019

  • 05月01日 2019

    初稿截稿日期

  • 06月21日 2019

    注册截止日期

联系方式
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询