2 / 2018-12-28 19:06:56
Prediction Model of SCR Outlet NOx Based on LSTM Algorithm
LSTM, SCR, desulfurization and denitration, NOx content at outlet
全文待审
际宇 谌 / 华北电力大学(北京)
烽 洪 / 华北电力大学(北京)
明明 高 / 华北电力大学(北京)
太华 常 / 华北电力大学(北京)
丽颖 许 / 华北电力大学(北京)
Pollutants emissions is strictly controlled in modern power plants, and Nitrogen Oxides (NOx), which is the main contaminants is the exhaust gas. The Selective Catalytic Reduction process (SCR) is commonly used for denitration. For achieving an effective the SCR outlet NOx concentration control, an accurate outlet NOx concentration model is necessary. A model using historical data is proposed, and long-short term memory(LSTM) algorithm is applied, which could describe relevance in time series. The accuracy performances for proposed data-driven model are verified, and root mean square error ( RMSE ) and mean absolute error (MAPE) for training set are, 0.706 mg/m3 and 1.99%, respectively, which for test set are 1.44 mg/m3 and 2.90%, respectively, The verification reveals that the accuracy for data-driven model is acceptable for control system design.
重要日期
  • 会议日期

    07月16日

    2019

    07月19日

    2019

  • 12月31日 2018

    初稿截稿日期

  • 07月19日 2019

    注册截止日期

历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询