267 / 2018-04-07 03:16:33
Machine Learning Methods for Rockburst Prediction – State-of-the-art Review
Rockbursts,,Machine Learning
终稿
Yuanyuan Pu / University of Alberta
Derek Apel / University of Alberta
Hani Mitri / University of McGill
Wei Victor Liu / University of Alberta
One of the most serious mine disasters in underground mines are rockburst phenomena. They can lead to serious injuries and even fatalities let alone damage to underground openings and mining equipment. This has forced many researchers around the world to investigate alternative methods to predict the potential for rockburst occurrence. However, due to the highly complex nature between the geological, mechanical and geometric parameters of the mining environment, the traditional mechanics-based prediction methods do not always yield precise results. With the emergence of machine learning methods, a new breakthrough in the prediction of rockbursts has become possible in recent years. In this paper, a state-of-the-art review of the various applications of machine learning methods for the prediction of rockburst potential is presented. First, existing rockburst prediction methods are introduced, and the limitations of such methods are highlighted. A brief overview of typical machine learning methods and their main features as predictive tools is then presented. The current applications of machine learning models in rockbursting prediction are surveyed, with related mechanisms, technical details and performance analysis.
重要日期
  • 会议日期

    10月22日

    2018

    10月24日

    2018

  • 05月31日 2018

    摘要截稿日期

  • 07月05日 2018

    初稿截稿日期

  • 08月10日 2018

    初稿录用通知日期

  • 10月24日 2018

    注册截止日期

主办单位
北京科技大学
McGill University
中国矿业大学(北京)
河南理工大学
University of Wollongong
东北大学
重庆大学
中国矿业大学
Laurentian University
辽宁工程技术大学
西安科技大学
北方工业大学
江西理工大学
黑龙江科技大学
协办单位
中国职业安全健康协会
中国安全生产科学研究院
煤炭信息研究院
中安安全工程研究院
International Journal of Mining Science and Technology
Safety Science
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询